Базы данных - модели, разработка, реализация


Даталогическое проектирование - часть 3


ОПРЕДЕЛЕНИЕ  
 

Схемы БД называются эквивалентными, если содержание исходной БД может быть получено путем естественного соединения отношений, входящих в результирующую схему, и при этом не появляется новых кортежей в исходной БД.

 

При выполнении эквивалентных преобразований сохраняется множество исходных фундаментальных функциональных зависимостей между атрибутами отношений.

Функциональные зависимости определяют не текущее состояние БД, а все возможные ее состояния, то есть они отражают те связи между атрибутами, которые присущи реальному объекту, который моделируется с помощью БД.

Поэтому определить функциональные зависимости по текущему состоянию БД можно только в том случае, если экземпляр БД содержит абсолютно полную информацию (то есть никаких добавлений и модификации БД не предполагается). В реальной жизни это требование невыполнимо, поэтому набор функциональных зависимостей задает разработчик, системный аналитик, исходя из глубокого системного анализа предметной области.

Приведем ряд основных определений.

Функциональной зависимостью набора атрибутов В отношения R от набора атрибутов А того же отношения, обозначаемой как

R.A -> R.B или А -> В

называется такое соотношение проекций R[A] и R[B], при котором в каждый момент времени любому элементу проекции R[A] соответствует только один элемент проекции R[B] , входящий вместе с ним в какой-либо кортеж отношения R.

Функциональная зависимость R.A -> R.B называется полной, если набор атрибутов В функционально зависит от А и не зависит функционально от любого подмножества А, то есть

R.A -> R.B называется полной, если:

  • ? А1 ? А ? R.A -/-> R.B,

что читается следующим образом:

для любого А1, являющегося подмножеством A, R.B функционально не зависит от R.A, в противном случае зависимость R.A -> R.B называется неполной.

112

Функциональная зависимость R.A -> R.B называется транзитивной, если существует набор атрибутов С такой, что:

  1. С не является подмножеством А.



  2. - Начало -  - Назад -  - Вперед -